Saturday, November 21, 2009

Oxygen Catastrophe

The Oxygen Catastrophe was a massive environmental change believed to have happened during the Siderian period at the beginning of the Paleoproterozoic era, about 2.4 billion years ago. It is also called the Oxygen Crisis, Oxygen Revolution or The Great Oxidation.
When evolving life forms developed oxyphotosynthesis about 2.7 billion years ago, molecular oxygen was produced in large quantities. The plentiful oxygen eventually caused an ecological crisis, as oxygen was toxic to the anaerobic organisms living at the time.
However, it also provided a new opportunity. Despite recycling, life had remained energetically limited until the widespread availability of oxygen. This breakthrough in metabolic evolution greatly increased the free energy supply to living organisms, having a truly global environmental impactOxygen CatastropheOxygen Catastrophe

Photosynthetic reaction centre


A photosynthetic reaction center is a complex of three proteins that is the site where molecular excitations originating from sunlight are transformed into a series of electron-transfer reactions. The reaction center proteins bind functional co-factors, chromophores or pigments such as chlorophyll and pheophytin molecules. These absorb light, promoting an electron to a higher energy level within a pigment. The free energy created is used to reduce a chain of electron acceptors which have subsequently lowered redox-potentials, and is critical for the production of chemical energy during photosynthesis.
Reaction centers are present in all green plants and in many bacteria and algae. Green plants have two reaction centers known as photosystem I and photosystem II and the structures of these centres are complex, involving a multisubunit protein. The reaction centre found in Rhodopseudomonas bacteria is currently better understood since it has fewer proteins than the examples in green plants.

In algae and bacteria


Algae come in multiple forms from multicellular organisms like kelp, to microscopic, single-cell organisms. Although they are not as complex as land plants, the biochemical process of photosynthesis is the same. Very much like plants, algae have chloroplasts and chlorophyll, but various accessory pigments are present in some algae such as phycocyanin, carotenes, and xanthophylls in green algae and phycoerythrin in red algae (rhodophytes), resulting in a wide variety of colors. Brown algae and diatoms contain fucoxanthol as their primary pigment. All algae produce oxygen, and many are autotrophic. However, some are heterotrophic, relying on materials produced by other organisms. For example, in coral reefs, there is a mutualistic relationship between zooxanthellae and the coral polyps.
Photosynthetic bacteria do not have chloroplasts (or any membrane-bound organelles). Instead, photosynthesis takes place directly within the cell. Cyanobacteria contain thylakoid membranes very similar to those in chloroplasts and are the only prokaryotes that perform oxygen-generating photosynthesis. In fact, chloroplasts are now considered to have evolved from an endosymbiotic bacterium, which was also an ancestor of and later gave rise to cyanobacterium. The other photosynthetic bacteria have a variety of different pigments, called bacteriochlorophylls, and do not produce oxygen. Some bacteria, such as Chromatium, oxidize hydrogen sulfide instead of water for photosynthesis, producing sulfur as waste.

Microscopy

Microscopy mi·cros·co·py (Pronunciation[mahy-kros-kuh-pee, mahy-kruh-skoh-pee]) is the technical field of using microscopes to view samples or objects. There are three well-known branches of microscopy, optical, electron and scanning probe microscopy.
Optical and electron microscopy involve the diffraction, reflection, or refraction of electromagnetic radiation incident upon the subject of study, and the subsequent collection of this scattered radiation in order to build up an image. This process may be carried out by wide field irradiation of the sample (for example standard light microscopy and transmission electron microscopy) or by scanning of a fine beam over the sample (for example confocal microscopy and scanning electron microscopy). Scanning probe microscopy involves the interaction of a scanning probe with the surface or object of interest. The development of microscopy revolutionized biology and remains an essential tool in that science, along with many others.

Diatom

Diatoms are a major group of eukaryotic algae, and are one of the most common types of phytoplankton. Most diatoms are unicellular, although they can exist as colonies in the shape of filaments or ribbons (e.g. Fragillaria), fans (Meridion), zigzags (Tabellaria), or stellate colonies (Asterionella). A characteristic feature of diatom cells is that they are encased within a unique cell wall made of silica (hydrated silicon dioxide) called a frustule. These frustules show a wide diversity in form, some quite beautiful and ornate, but usually consist of two asymmetrical sides with a split between them, hence the group name. Fossil evidence suggests that they originated during, or before, the early Jurassic Period. Diatom communities are a popular tool for monitoring environmental conditions, past and present, and are commonly used in studies of water quality.

Phycocyanin

Phycocyanin is a pigment from the light-harvesting phycobiliprotein family, along with allophycocyanin and phycoerythrin. It is an accessory pigment to chlorophyll. All phycobiliproteins are water soluble and therefore cannot exist within the membrane like carotenoids, but aggregate forming clusters that adhere to the membrane called phycobilisomes. Phycocyanin absorbs orange and red light, particularly near 620 nm (depending on which specific type it is), and emits fluorescence at about 650 nm (also depending on which type it is). Allophycocyanin absorbs and emits at longer wavelengths than Phycocyanin C or Phycocyanin R. Phycocyanins are found in Cyanobacteria (previously called blue-green algae). Phycobiliproteins have fluorescent properties that are used in immunoassay kits. Phycocyanin is from the Greek phyco meaning “algae” and cyanin is from the English word “cyan", which is derived from the Greek “kyanos" and means blue-green. The product Phycocyanin, produced by Spirulina, is used in the food and beverage industry as the colouring agent 'Lima Blue' and is found in sweets and ice cream.