Saturday, December 19, 2009

Molecular Biology

Molecular biology is the study of biology at a molecular level. The field overlaps with other areas of biology and chemistry, particularly genetics and biochemistry. Molecular biology chiefly concerns itself with understanding the interactions between the various systems of a cell, including the interactions between DNA, RNA and protein biosynthesis and learning how these interactions are regulated.
Writing in Nature, William Astbury described molecular biology as:
"... not so much a technique as an approach, an approach from the viewpoint of the so-called basic sciences with the leading idea of searching below the large-scale manifestations of classical biology for the corresponding molecular plan. It is concerned particularly with the forms of biological molecules and ..... is predominantly three-dimensional and structural - which does not mean, however, that it is merely a refinement of morphology - it must at the same time inquire into genesis and function.

Microorganism


A microorganism (also can be spelled as micro organism) or microbe is an organism that is microscopic (too small to be seen by the naked human eye). The study of microorganisms is called microbiology, a subject that began with Anton van Leeuwenhoek's discovery of microorganisms in 1675, using a microscope of his own design.
Microorganisms are incredibly diverse and include bacteria, fungi, archaea, and protists, as well as some microscopic plants and animals such as plankton, and popularly-known animals such as the planarian and the amoeba. They do not include viruses and prions, which are generally classified as non-living. Most microorganisms are single-celled, or unicellular, but some multicellular organisms are microscopic, while some unicellular protists, and a bacteria called Thiomargarita namibiensis are visible to the naked eye.
Microorganisms live in all parts of the biosphere where there is liquid water, including hot springs, on the ocean floor, high in the atmosphere and deep inside rocks within the Earth's crust. Microorganisms are critical to nutrient recycling in ecosystems as they act as decomposers. As some microorganisms can fix nitrogen, they are a vital part of the nitrogen cycle, and recent studies indicate that airborne microbes may play a role in precipitation and weather.
Microbes are also exploited by people in biotechnology, both in traditional food and beverage preparation, as well as modern technologies based on genetic engineering. However, pathogenic microbes are harmful, since they invade and grow within other organisms, causing diseases that kill millions of people, other animals, and plants.

Animals


Animals are a major group of multicellular, eukaryotic organisms of the kingdom Animalia or Metazoa. Their body plan becomes fixed as they develop, although some undergo a process of metamorphosis later on in their life. Most animals are motile - they can move spontaneously and independently. Animals are heterotrophs - they are dependent on other organisms (e.g. plants) for sustenance.
Most known animal phyla appeared in the fossil record as marine species during the Cambrian explosion, about 542 million years ago.

Anatomy


Anatomy (from the Greek ἀνατομία anatomia, from ἀνατέμνειν ana: separate, apart from, and temnein, to cut up, cut open) is a branch of biology that is the consideration of the structure of living things. It is a general term that includes human anatomy, animal anatomy (zootomy) and plant anatomy (phytotomy). In some of its facets anatomy is closely related to embryology, comparative anatomy and comparative embryology, through common roots in evolution.
Anatomy is subdivided into gross anatomy (or macroscopic anatomy) and microscopic anatomy. Gross anatomy (also called topographical anatomy, regional anatomy, or anthropotomy) is the study of anatomical structures that can be seen by unaided vision. Microscopic anatomy is the study of minute anatomical structures assisted with microscopes, which includes histology (the study of the organisation of tissues),and cytology (the study of cells).
The history of anatomy has been characterized, over time, by a continually developing understanding of the functions of organs and structures in the body. Methods have also advanced dramatically, advancing from examination of animals through dissection of cadavers (dead human bodies) to technologically complex techniques developed in the 20th century.

Saturday, November 21, 2009

Oxygen Catastrophe

The Oxygen Catastrophe was a massive environmental change believed to have happened during the Siderian period at the beginning of the Paleoproterozoic era, about 2.4 billion years ago. It is also called the Oxygen Crisis, Oxygen Revolution or The Great Oxidation.
When evolving life forms developed oxyphotosynthesis about 2.7 billion years ago, molecular oxygen was produced in large quantities. The plentiful oxygen eventually caused an ecological crisis, as oxygen was toxic to the anaerobic organisms living at the time.
However, it also provided a new opportunity. Despite recycling, life had remained energetically limited until the widespread availability of oxygen. This breakthrough in metabolic evolution greatly increased the free energy supply to living organisms, having a truly global environmental impactOxygen CatastropheOxygen Catastrophe

Photosynthetic reaction centre


A photosynthetic reaction center is a complex of three proteins that is the site where molecular excitations originating from sunlight are transformed into a series of electron-transfer reactions. The reaction center proteins bind functional co-factors, chromophores or pigments such as chlorophyll and pheophytin molecules. These absorb light, promoting an electron to a higher energy level within a pigment. The free energy created is used to reduce a chain of electron acceptors which have subsequently lowered redox-potentials, and is critical for the production of chemical energy during photosynthesis.
Reaction centers are present in all green plants and in many bacteria and algae. Green plants have two reaction centers known as photosystem I and photosystem II and the structures of these centres are complex, involving a multisubunit protein. The reaction centre found in Rhodopseudomonas bacteria is currently better understood since it has fewer proteins than the examples in green plants.

In algae and bacteria


Algae come in multiple forms from multicellular organisms like kelp, to microscopic, single-cell organisms. Although they are not as complex as land plants, the biochemical process of photosynthesis is the same. Very much like plants, algae have chloroplasts and chlorophyll, but various accessory pigments are present in some algae such as phycocyanin, carotenes, and xanthophylls in green algae and phycoerythrin in red algae (rhodophytes), resulting in a wide variety of colors. Brown algae and diatoms contain fucoxanthol as their primary pigment. All algae produce oxygen, and many are autotrophic. However, some are heterotrophic, relying on materials produced by other organisms. For example, in coral reefs, there is a mutualistic relationship between zooxanthellae and the coral polyps.
Photosynthetic bacteria do not have chloroplasts (or any membrane-bound organelles). Instead, photosynthesis takes place directly within the cell. Cyanobacteria contain thylakoid membranes very similar to those in chloroplasts and are the only prokaryotes that perform oxygen-generating photosynthesis. In fact, chloroplasts are now considered to have evolved from an endosymbiotic bacterium, which was also an ancestor of and later gave rise to cyanobacterium. The other photosynthetic bacteria have a variety of different pigments, called bacteriochlorophylls, and do not produce oxygen. Some bacteria, such as Chromatium, oxidize hydrogen sulfide instead of water for photosynthesis, producing sulfur as waste.